Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncologist ; 27(3): 167-174, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35274707

RESUMO

BACKGROUND: Homologous recombination deficiency (HRD) is a phenotype that is characterized by the inability of a cell to effectively repair DNA double-strand breaks using the homologous recombination repair (HRR) pathway. Loss-of-function genes involved in this pathway can sensitize tumors to poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitors and platinum-based chemotherapy, which target the destruction of cancer cells by working in concert with HRD through synthetic lethality. However, to identify patients with these tumors, it is vital to understand how to best measure homologous repair (HR) status and to characterize the level of alignment in these measurements across different diagnostic platforms. A key current challenge is that there is no standardized method to define, measure, and report HR status using diagnostics in the clinical setting. METHODS: Friends of Cancer Research convened a consortium of project partners from key healthcare sectors to address concerns about the lack of consistency in the way HRD is defined and methods for measuring HR status. RESULTS: This publication provides findings from the group's discussions that identified opportunities to align the definition of HRD and the parameters that contribute to the determination of HR status. The consortium proposed recommendations and best practices to benefit the broader cancer community. CONCLUSION: Overall, this publication provides additional perspectives for scientist, physician, laboratory, and patient communities to contextualize the definition of HRD and various platforms that are used to measure HRD in tumors.


Assuntos
Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Proteína BRCA1/genética , Reparo do DNA , Feminino , Recombinação Homóloga/genética , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/genética , Reparo de DNA por Recombinação/genética
2.
Nat Biotechnol ; 37(11): 1351-1360, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31570899

RESUMO

Genomic analysis of paired tumor-normal samples and clinical data can be used to match patients to cancer therapies or clinical trials. We analyzed 500 patient samples across diverse tumor types using the Tempus xT platform by DNA-seq, RNA-seq and immunological biomarkers. The use of a tumor and germline dataset led to substantial improvements in mutation identification and a reduction in false-positive rates. RNA-seq enhanced gene fusion detection and cancer type classifications. With DNA-seq alone, 29.6% of patients matched to precision therapies supported by high levels of evidence or by well-powered studies. This proportion increased to 43.4% with the addition of RNA-seq and immunotherapy biomarker results. Combining these data with clinical criteria, 76.8% of patients were matched to at least one relevant clinical trial on the basis of biomarkers measured by the xT assay. These results indicate that extensive molecular profiling combined with clinical data identifies personalized therapies and clinical trials for a large proportion of patients with cancer and that paired tumor-normal plus transcriptome sequencing outperforms tumor-only DNA panel testing.


Assuntos
Genômica/métodos , Neoplasias/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Medicina de Precisão
3.
Oncotarget ; 10(24): 2384-2396, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-31040929

RESUMO

We developed and clinically validated a hybrid capture next generation sequencing assay to detect somatic alterations and microsatellite instability in solid tumors and hematologic malignancies. This targeted oncology assay utilizes tumor-normal matched samples for highly accurate somatic alteration calling and whole transcriptome RNA sequencing for unbiased identification of gene fusion events. The assay was validated with a combination of clinical specimens and cell lines, and recorded a sensitivity of 99.1% for single nucleotide variants, 98.1% for indels, 99.9% for gene rearrangements, 98.4% for copy number variations, and 99.9% for microsatellite instability detection. This assay presents a wide array of data for clinical management and clinical trial enrollment while conserving limited tissue.

4.
Oncotarget ; 9(40): 25826-25832, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29899824

RESUMO

We have developed a clinically validated NGS assay that includes tumor, germline and RNA sequencing. We apply this assay to clinical specimens and cell lines, and we demonstrate a clinical sensitivity of 98.4% and positive predictive value of 100% for the clinically actionable variants measured by the assay. We also demonstrate highly accurate copy number measurements and gene rearrangement identification.

5.
BMC Genomics ; 19(1): 180, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29510677

RESUMO

BACKGROUND: The potential utility of microRNA as biomarkers for early detection of cancer and other diseases is being investigated with genome-scale profiling of differentially expressed microRNA. Processes for measurement assurance are critical components of genome-scale measurements. Here, we evaluated the utility of a set of total RNA samples, designed with between-sample differences in the relative abundance of miRNAs, as process controls. RESULTS: Three pure total human RNA samples (brain, liver, and placenta) and two different mixtures of these components were evaluated as measurement assurance control samples on multiple measurement systems at multiple sites and over multiple rounds. In silico modeling of mixtures provided benchmark values for comparison with physical mixtures. Biomarker development laboratories using next-generation sequencing (NGS) or genome-scale hybridization assays participated in the study and returned data from the samples using their routine workflows. Multiplexed and single assay reverse-transcription PCR (RT-PCR) was used to confirm in silico predicted sample differences. Data visualizations and summary metrics for genome-scale miRNA profiling assessment were developed using this dataset, and a range of performance was observed. These metrics have been incorporated into an online data analysis pipeline and provide a convenient dashboard view of results from experiments following the described design. The website also serves as a repository for the accumulation of performance values providing new participants in the project an opportunity to learn what may be achievable with similar measurement processes. CONCLUSIONS: The set of reference samples used in this study provides benchmark values suitable for assessing genome-scale miRNA profiling processes. Incorporation of these metrics into an online resource allows laboratories to periodically evaluate their performance and assess any changes introduced into their measurement process.


Assuntos
Encéfalo/metabolismo , Perfilação da Expressão Gênica/normas , Genoma Humano , Fígado/metabolismo , MicroRNAs/genética , Placenta/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Gravidez , Padrões de Referência
6.
BMC Biotechnol ; 16(1): 54, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27342544

RESUMO

BACKGROUND: Highly multiplexed assays for quantitation of RNA transcripts are being used in many areas of biology and medicine. Using data generated by these transcriptomic assays requires measurement assurance with appropriate controls. Methods to prototype and evaluate multiple RNA controls were developed as part of the External RNA Controls Consortium (ERCC) assessment process. These approaches included a modified Latin square design to provide a broad dynamic range of relative abundance with known differences between four complex pools of ERCC RNA transcripts spiked into a human liver total RNA background. RESULTS: ERCC pools were analyzed on four different microarray platforms: Agilent 1- and 2-color, Illumina bead, and NIAID lab-made spotted microarrays; and two different second-generation sequencing platforms: the Life Technologies 5500xl and the Illumina HiSeq 2500. Individual ERCC controls were assessed for reproducible performance in signal response to concentration among the platforms. Most demonstrated linear behavior if they were not located near one of the extremes of the dynamic range. Performance issues with any individual ERCC transcript could be attributed to detection limitations, platform-specific target probe issues, or potential mixing errors. Collectively, these pools of spike-in RNA controls were evaluated for suitability as surrogates for endogenous transcripts to interrogate the performance of the RNA measurement process of each platform. The controls were useful for establishing the dynamic range of the assay, as well as delineating the useable region of that range where differential expression measurements, expressed as ratios, would be expected to be accurate. CONCLUSIONS: The modified Latin square design presented here uses a composite testing scheme for the evaluation of multiple performance characteristics: linear performance of individual controls, signal response within dynamic range pools of controls, and ratio detection between pairs of dynamic range pools. This compact design provides an economical sample format for the evaluation of multiple external RNA controls within a single experiment per platform. These results indicate that well-designed pools of RNA controls, spiked into samples, provide measurement assurance for endogenous gene expression studies.


Assuntos
Perfilação da Expressão Gênica/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , RNA/genética , RNA/normas , Análise de Sequência de RNA/normas , Algoritmos , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
BMC Genomics ; 16: 708, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26383878

RESUMO

BACKGROUND: Genome-scale "-omics" measurements are challenging to benchmark due to the enormous variety of unique biological molecules involved. Mixtures of previously-characterized samples can be used to benchmark repeatability and reproducibility using component proportions as truth for the measurement. We describe and evaluate experiments characterizing the performance of RNA-sequencing (RNA-Seq) measurements, and discuss cases where mixtures can serve as effective process controls. RESULTS: We apply a linear model to total RNA mixture samples in RNA-seq experiments. This model provides a context for performance benchmarking. The parameters of the model fit to experimental results can be evaluated to assess bias and variability of the measurement of a mixture. A linear model describes the behavior of mixture expression measures and provides a context for performance benchmarking. Residuals from fitting the model to experimental data can be used as a metric for evaluating the effect that an individual step in an experimental process has on the linear response function and precision of the underlying measurement while identifying signals affected by interference from other sources. Effective benchmarking requires well-defined mixtures, which for RNA-Seq requires knowledge of the post-enrichment 'target RNA' content of the individual total RNA components. We demonstrate and evaluate an experimental method suitable for use in genome-scale process control and lay out a method utilizing spike-in controls to determine enriched RNA content of total RNA in samples. CONCLUSIONS: Genome-scale process controls can be derived from mixtures. These controls relate prior knowledge of individual components to a complex mixture, allowing assessment of measurement performance. The target RNA fraction accounts for differential selection of RNA out of variable total RNA samples. Spike-in controls can be utilized to measure this relationship between target RNA content and input total RNA. Our mixture analysis method also enables estimation of the proportions of an unknown mixture, even when component-specific markers are not previously known, whenever pure components are measured alongside the mixture.


Assuntos
RNA/genética , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica , RNA/química
8.
J Med Chem ; 57(5): 1694-707, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24138284

RESUMO

The internal ribosome entry site (IRES) in the 5' untranslated region (UTR) of the hepatitis C virus (HCV) genome initiates translation of the viral polyprotein precursor. The unique structure and high sequence conservation of the 5' UTR render the IRES RNA a potential target for the development of selective viral translation inhibitors. Here, we provide an overview of approaches to block HCV IRES function by nucleic acid, peptide, and small molecule ligands. Emphasis will be given to the IRES subdomain IIa, which currently is the most advanced target for small molecule inhibitors of HCV translation. The subdomain IIa behaves as an RNA conformational switch. Selective ligands act as translation inhibitors by locking the conformation of the RNA switch. We review synthetic procedures for inhibitors as well as structural and functional studies of the subdomain IIa target and its ligand complexes.


Assuntos
Hepacivirus/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Regiões 5' não Traduzidas , Hepacivirus/genética , Modelos Moleculares
9.
Proc Natl Acad Sci U S A ; 108(16): 6405-8, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21464284

RESUMO

The three-dimensional structures of noncoding RNA molecules reveal recurring architectural motifs that have been exploited for the design of artificial RNA nanomaterials. Programmed assembly of RNA nanoobjects from autonomously folding tetraloop-receptor complexes as well as junction motifs has been achieved previously through sequence-directed hybridization of complex sets of long oligonucleotides. Due to size and complexity, structural characterization of artificial RNA nanoobjects has been limited to low-resolution microscopy studies. Here we present the design, construction, and crystal structure determination at 2.2 Å of the smallest yet square-shaped nanoobject made entirely of double-stranded RNA. The RNA square is comprised of 100 residues and self-assembles from four copies each of two oligonucleotides of 10 and 15 bases length. Despite the high symmetry on the level of secondary structure, the three-dimensional architecture of the square is asymmetric, with all four corners adopting distinct folding patterns. We demonstrate the programmed self-assembly of RNA squares from complex mixtures of corner units and establish a concept to exploit the RNA square as a combinatorial nanoscale platform.


Assuntos
Conformação de Ácido Nucleico , RNA/química , Cristalografia por Raios X , RNA/genética
11.
Nucleic Acids Res ; 38(13): 4458-65, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20215440

RESUMO

Oligonucleotide models of ribosomal RNA domains are powerful tools to study the binding and molecular recognition of antibiotics that interfere with bacterial translation. Techniques such as selective chemical modification, fluorescence labeling and mutations are cumbersome for the whole ribosome but readily applicable to model RNAs, which are readily crystallized and often give rise to higher resolution crystal structures suitable for detailed analysis of ligand-RNA interactions. Here, we have investigated the HX RNA construct which contains two adjacent ligand binding regions of helix h44 in 16S ribosomal RNA. High-resolution crystal structure analysis confirmed that the HX RNA is a faithful structural model of the ribosomal target. Solution studies showed that HX RNA carrying a fluorescent 2-aminopurine modification provides a model system that can be used to monitor ligand binding to both the ribosomal decoding site and, through an indirect effect, the hygromycin B interaction region.


Assuntos
Aminoglicosídeos/química , Antibacterianos/química , Modelos Moleculares , RNA Ribossômico 16S/química , 2-Aminopurina/química , Sítios de Ligação , Cristalografia por Raios X , Higromicina B/química , Ligantes , Conformação de Ácido Nucleico
12.
Nat Chem Biol ; 5(11): 823-5, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19767736

RESUMO

The internal ribosome entry site (IRES), a highly conserved structured element of the hepatitis C virus (HCV) genomic RNA, is an attractive target for antiviral drugs. Here we show that benzimidazole inhibitors of the HCV replicon act by conformational induction of a widened interhelical angle in the IRES subdomain IIa, which facilitates the undocking of subdomain IIb from the ribosome and ultimately leads to inhibition of IRES-driven translation in HCV-infected cells.


Assuntos
Hepacivirus/metabolismo , Ribossomos/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Sequência de Bases , Benzimidazóis/farmacologia , Citosina/química , Genoma Viral/efeitos dos fármacos , Genótipo , Hepacivirus/química , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Magnésio/farmacologia , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Replicon/efeitos dos fármacos , Replicon/genética , Ribossomos/genética , Ribossomos/virologia , Transdução de Sinais
13.
J Struct Biol ; 153(2): 103-12, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16377205

RESUMO

An essential step in understanding the molecular basis of protein-protein interactions is the accurate identification of inter-protein contacts. We evaluate a number of common methods used in analyzing protein-protein interfaces: a Voronoi polyhedra-based approach, changes in solvent accessible surface area (DeltaSASA) and various radial cutoffs (closest atom, Cbeta, and centroid). First, we compared the Voronoi polyhedra-based analysis to the DeltaSASA and show that using Voronoi polyhedra finds knob-in-hole contacts. To assess the accuracy between the Voronoi polyhedra-based approach and the various radial cutoff methods, two sets of data were used: a small set of 75 experimental mutants and a larger one of 592 structures of protein-protein interfaces. In an assessment using the small set, the Voronoi polyhedra-based methods, a solvent accessible surface area method, and the closest atom radial method identified 100% of the direct contacts defined by mutagenesis data, but only the Voronoi polyhedra-based method found no false positives. The other radial methods were not able to find all of the direct contacts even using a cutoff of 9A. With the larger set of structures, we compared the overall number contacts using the Voronoi polyhedra-based method as a standard. All the radial methods using a 6-A cutoff identified more interactions, but these putative contacts included many false positives as well as missed many false negatives. While radial cutoffs are quicker to calculate as well as to implement, this result highlights why radial cutoff methods do not have the proper resolution to detail the non-homogeneous packing within protein interfaces, and suggests an inappropriate bias in pair-wise contact potentials. Of the radial cutoff methods, using the closest atom approach exhibits the best approximation to the more intensive Voronoi calculation. Our version of the Voronoi polyhedra-based method QContacts is available at .


Assuntos
Estudos de Avaliação como Assunto , Modelos Moleculares , Bases de Dados de Proteínas , Modelos Químicos , Mutação , Ligação Proteica , Proteínas/química , Solventes/química , Água/química
14.
J Comput Chem ; 26(10): 1063-8, 2005 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-15898109

RESUMO

Many applications require a method for translating a large list of bond angles and bond lengths to precise atomic Cartesian coordinates. This simple but computationally consuming task occurs ubiquitously in modeling proteins, DNA, and other polymers as well as in many other fields such as robotics. To find an optimal method, algorithms can be compared by a number of operations, speed, intrinsic numerical stability, and parallelization. We discuss five established methods for growing a protein backbone by serial chain extension from bond angles and bond lengths. We introduce the Natural Extension Reference Frame (NeRF) method developed for Rosetta's chain extension subroutine, as well as an improved implementation. In comparison to traditional two-step rotations, vector algebra, or Quaternion product algorithms, the NeRF algorithm is superior for this application: it requires 47% fewer floating point operations, demonstrates the best intrinsic numerical stability, and offers prospects for parallel processor acceleration. The NeRF formalism factors the mathematical operations of chain extension into two independent terms with orthogonal subsets of the dependent variables; the apparent irreducibility of these factors hint that the minimal operation set may have been identified. Benchmarks are made on Intel Pentium and Motorola PowerPC CPUs.


Assuntos
Algoritmos , Modelos Moleculares , Biossíntese de Proteínas , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...